MATRL 218/CHEM 227: Assignment 5

Ram Seshadri (seshadri@mrl.ucsb.edu)

Due date: March 7th 2005

- 1. The susceptibility of a Curie paramagnet at 0 K diverges. What does this mean. Explain how an internal field (the Θ in the Curie-Weiss law) shifts the temperature at which such divergence is observed to positive values (ferromagnetic interactions) or to negative values (antiferromagnetic interactions).
- 2. Consider various spinel ferrites $A^{2+}Fe_2^{3+}O_4$. For the A ions Mn, Co, or Ni, calculate the numbers of unpaired electrons per spinel formula unit if the spinels are all ferrimagnetic (the moments on the A atom and Fe point in opposite directions). Keep in mind that A is tetrahedral and B (Fe³⁺) is octahedral.
- 3. Sketch isotherms of the van der Waals equation of state (per mole):

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

Show that for some of the isotherms, there are regions that are unstable. How is this corrected? Explain the nature of flat regions in the corrected plot.

- 4. Use the perovskite tolerance factor (which you must calculate) to explain why CaTiO₃ and SrTiOi₃ are different from BaTiO₃ in that the first two compounds do not display ferroelectricity. Radii for calculating *t* can be obtained from my web page.
- 5. BaMO₃ (M = Ti, Zr, Hf) display the following trend in the paraelectric-ferroelectric T_C s: BaTiO₃ > BaZrO₃ ~ BaHfO₃. Calculate the perovskite tolerance factors for these three compounds, and use these to explain the trend.
- 6. How would you describe the following phase transitions in crystal-chemical terms:
 - (a) The complete slowing down of reorientation in solid C_{60} at low temperatures.
 - (b) The transition from cubic perovskite to tetragonal perovskite in PbTiO₃
 - (c) The change on going from the perovskite structure to the tetragonal tungsten bronze (ttb) structure