MATRL 218/CHEM 227: Assignment 4

Ram Seshadri (seshadri@mrl.ucsb.edu)

Due date: February 23, 2006

- 1. In class, we examined the band structure of a square lattice of s orbitals. Sketch out the band structure of a *rectangular* lattice of s orbitals with a and b as the lattice parameters and a < b. Remember that $X(0, \frac{\pi}{a})$ and $Y(\frac{\pi}{b}, 0)$ will not be degenerate. Sketch the DOS alongside.
- 2. Sketch the band structure of square lattice of p_x and p_y orbitals, with the DOS alongside.
- 3. Sketch the most bonding and the most antibonding crystal orbitals formed from sp^2 orbitals on carbon in graphite. Do the same for p_z orbitals.
- 4. Sketch the most antibonding sp^3 crystal orbital for (a few) Si atoms within the unit cell of diamond Si. Why is molten Si metallic, while crystalline Si is insulating.
- 5. FeS₂ (fool's gold) has the pyrite structure (octahedral Fe) and because of a bond between the two S atoms (characterized by a short S-S distance), it can be formulated $Fe^{2+}[S_2]^{2-}$. Magnetic measurements suggest that the compound is *non-magnetic*.
 - (a) Sketch out the crystal field (showing t_{2g} and e_g levels) and fill them with the correct number of electrons.
 - (b) Sketch out schematic densities of states showing Fe *d* states and S *p* states. Do you expect a metal or an insulator?
 - (c) What do you expect the situation in CoS₂ to be? It has the same crystal structure.
- 6. TiS₂ has the layered CdI₂ structure, and there are no short S-S distances.
 - (a) What is the oxidation state of Ti?
 - (b) Sketch out schematic DOS showing Ti *d* states and S *p* states. Do you expect an metal or an insulator ?
 - (c) TiS₂ shows metallic conductivity. Suggest a possible origin?