Higher Dimensional Crystallography

Efrain E. Rodriguez

Talk Outline

- The 'Golden Ratio' in nature.
- Quasicrystals and incommensurate structures.
- Periodic functions vs. quasiperiodic functions.
- Aperiodic tiling.
- Embedding in higher dimensional space.
- Indexing in higher dimensional crystallography.

The 'Golden Ratio' in nature

- The Golden Ratio, τ or φ, can be found in many patterns in nature.
- Maximal packing.
- First defined by Euclid.
- Accurately describes the geometry of pentagons.¹

$$\tau = \frac{AB}{AC}$$

$$\tau$$
 = 1.618034...

1. Mario Livio, <u>The Golden Ratio</u>, Broadway Books, New York 2002.

Incommensurately modulated structures (IMS)

- Periodic distortions incommensurable with the translation periods of the basic lattice.
- Satellite peaks around main peaks.
- Structure factor has an extra contribution from reflections.³

$$r_{u,j} = r_j^0 + r_u$$

$$r_{u,j} = r_j^0 + r_u + f_j (q \cdot (r_j^0 + r_u) - \phi)$$

$$g = ha_1^* + ka_2^* + la_3^* + mq$$

Electron diffraction pattern of Ba_{0.85}Ca_{2.15}In₆O₁₂ showing satellite peaks due to incommensurate modulation.²

- 2. G. Baldinozzi, F. Goutenoire, M. Hervieu, E. Suard and D. Grebille, *Acta Cryst.,* 780-789, **B52** (1996).
- 3. T. Janssen, *Physics Reports*, 55-113, <u>168</u> (1988).

Five-fold symmetry in quasicrystals

- Discovery in 1984 by Shechtman leads to the term quasicrystals - any crystal that displays forbidden crystallographic symmetries.
- In 3-D, cannot be tiled by a single parallelepiped.
- Exhibits long-range order but not periodicity.
- Special kind of incommensurate structures.

Diffraction pattern of Al-Mn alloy showing icosahedral point symmetry m-5-3.4

The math of quasiperiodic functions

• Periodic function f(x) can be expanded in a Fourier series.

$$f(x) = f(x+np)$$

$$f(x) = \sum_{n_1 = -\infty}^{\infty} f^*(n_1) \exp[2\pi i n_1 x]$$

$$f(x_1, ..., x_N) = \sum_{n_1, ..., n_N} f^*(n_1, ..., n_N) \exp[2\pi i (n_1 x_1 + \cdots + n_N x_N)]$$

$$g(x) = \sum_{n_1, ..., n_N} f^*(n_1, ..., n_N) \exp[2\pi i (n_1 v_1 + \cdots + n_N v_N) x]$$

2D to 1D example:

$$f(x, y) = A_1 \sin(2\pi x) + A_2 \sin(2\pi y)$$
$$y = \alpha x$$
$$f'(x) = A_1 \sin(2\pi x) + A_2 \sin(2\pi \alpha x)$$

• g(x) and f'(x) are quasiperiodic functions if v and α are irrational numbers.

Approximations with periodic functions

 Model with a series of delta functions (crosses and open circles).

$$\sum_{n} \delta(x - na)$$

$$\sum_{m} \delta(x - ma \tau/2)$$

$$\tau = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

Penrose tiling

- Example of aperiodic tiling.
- Properties of Penrose quasicrystal.
 - Quasiperiodic translational order.
 - Minimal separation between atoms.
 - Orientational order.
- The two prototiles have matching rules.
- Matching rules correspond to physical forces in a material.
- Recently, Steinhardt and Jeong showed that you can tile with decagon and maximize density.⁵

Penrose tiling from connecting two rhombi according to matching rules.⁵

- 5. Ch. Janot and J.M. Dubois, *J. Phys. F: Met. Phys.*, 2303-2343, **18** (1988).
- 6. P.J. Steinhardt, and H.C. Jeong, *Nature*, 431-433, <u>382</u> (1996).

Fourier transforms of Penrose tiling and quasiperiodic functions

 In 1982 Mackay proves that aperiodic tilings can show sharp Bragg peaks.

Optical diffraction of Penrose tiling displays 10-fold symmetry.⁷

Optical diffraction of Penrose tiling with red laser.8

- 7. A.L. Mackay, *Physica*, 609-613, **114A** (1982).
- 8. T. R. Welberry website http://rsc.anu.edu/~welberry/Optical_transform/

Embedding in higher-dimensional crystallography

- Several methods
 - Multigrid method.
 - Cut-and-project method.
 - Projection method.
- Can extend the methods to higher dimensions.
- For icosahedral 3-D groups, can be thought of cut-and-project strips in 6-D.
- Would use h/h', k/k', l/l' to index an icosahedral superspace group.

Example of cut-and-project method in which a cut with an irrational slope through 2-D leads to Fibonacci sequence in 1-D.⁵

N-dimensional crystallography

- Deal with periodic functions and therefore the usual formalism of crystallographic space groups.
- For quasicrystals, new point groups can be achieved (e.g. pentagonal, octagonal, icosahedral).
- Crystallographic point groups have different ranks, or the number of dimensions to make the spacing periodic.

T. Janssen, *Physics Reports*, 55 -113, <u>168</u> (1988).

```
Table 4.3
Bravais classes of 2D quasicrystals of rank 4 with a 2D crystallo-
                        graphic point group
        Tetragonal 4: (1,0), (\alpha, \beta) with \beta \neq 0; rank = 4
             Tetragonal 4m: (1,0), (\alpha,0); rank = 4
             Tetragonal 4m: (1,0), (\alpha,\alpha); rank = 4
           -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
                Tetragonal 4m: (\alpha, \beta); rank = 4
          -1 0 0 0 | 0 0 0 1 |
           0 0 0 1 -1 0 0 0
             Hexagonal 6m: (1,0), (\alpha,0); rank = 4
             Hexagonal 6m: (1, 0), (\alpha, \alpha); rank = 4
```

Point groups in higher dimensions

point					
group	k	rank	R ₁	R ₂	R,
5	(1, 0, z)	5	(y, z, u, v, x)		
5m		5	(y, z, u, v, x)	(x, v, u, z, y)	
			(y, z, u, v, x)	$(x + \frac{1}{2}, v + \frac{1}{2}, u + \frac{1}{2}, z + \frac{1}{2}, y + \frac{1}{2})$	
52		5	(y, z, u, v, x)	$(\bar{x}, \bar{v}, \bar{u}, \bar{z}, \bar{y})$	
5		5	$(\bar{y}, \bar{z}, \bar{u}, \bar{v}, \bar{x})$		
5m		5	$(\bar{y}, \bar{z}, \bar{u}, \bar{v}, \bar{x})$	(x, v, u, z, y)	
			$(\bar{y}, \bar{z}, \bar{u}, \bar{v}, \bar{x})$	$(x + \frac{1}{2}, v + \frac{1}{2}, u + \frac{1}{2}, z + \frac{1}{2}, y + \frac{1}{2})$	
5	(001), (100)	5	$(x + p/5, z, u, v, \bar{S}) p = 0, 1, 2$		
5m1		5	$(x, z, u, v, \overline{S})$	(x, v, u, z, y)	
			$(x, z, u, v, \overline{S})$	$(x + \frac{1}{2}, v, u, z, y)$	
51m		5	$(x, z, u, v, \overline{S})$	(x, \bar{S}, v, u, z)	
			(x, z, u, v, \bar{S})	$(x + \frac{1}{2}, \tilde{S}, v, u, z)$	
521		5	$(x + p/5, z, u, v, \hat{S}) p = 0, 1, 2$	$(\bar{x}, \bar{v}, \bar{u}, \bar{z}, \bar{y})$	
512		5	$(x + p/5, z, u, v, \bar{S}) p = 0, 1, 2$	$(\vec{x}, S, \vec{v}, \vec{u}, \vec{z})$	
3		5	$(\bar{x}, \bar{z}, \bar{u}, \bar{v}, S)$		
3m1		5	$(\vec{x}, \vec{z}, \vec{u}, \vec{v}, S)$	(x, v, u, z, y)	
			$(\bar{x}, \bar{z}, \bar{u}, \bar{v}, S)$	$(x + \frac{1}{2}, v, u, z, y)$	
51m		5	$(\bar{x}, \bar{z}, \bar{u}, \bar{v}, S)$	$(x, \bar{v}, \bar{u}, \bar{z}, \bar{y})$	
			$(\bar{x}, \bar{z}, \bar{u}, \bar{v}, S)$	$(x + \frac{1}{2}, \tilde{v}, \tilde{u}, \tilde{z}, \tilde{y})$	
10		5	$(x + p/10, \bar{v}, S, \bar{y}, \bar{z}) p = 0,, 5$		
10		5	$(\tilde{x}, v, \tilde{S}, y, z)$		
10/m		5	$(x, \vec{v}, S, \vec{y}, \vec{z})$	$(\bar{x}, y, z, u, \bar{S})$	
			$(x + \frac{1}{2}, \overline{v}, S, \overline{y}, \overline{z})$	$(\bar{x}, y, z, u, \bar{S})$	
10mm		5	$(x, \bar{v}, S, \bar{y}, \bar{z})$	(x, v, u, z, y)	
			$(x + \frac{1}{2}, \bar{v}, S, \bar{y}, \bar{z})$	(x, v, u, z, y)	
			$(x, \bar{v}, S, \bar{y}, \bar{z})$	$(x + \frac{1}{2}, v, u, z, y)$	
			$(x + \frac{1}{2}, \vec{v}, S, \vec{y}, \vec{z})$	$(x + \frac{1}{2}, v, u, z, y)$	
10 22		5	$(x + p/10, \bar{v}, S, \bar{y}, \bar{z}) p = 0,, 5$	$(\bar{x}, \bar{v}, \bar{u}, \bar{z}, \bar{y})$	
10 2m		5	$(\bar{x}, v, \bar{S}, y, z)$	$(\vec{x}, \vec{v}, \vec{u}, \vec{z}, \vec{y})$	
			$(\bar{x} + \frac{1}{2}, \nu, \bar{S}, \gamma, z)$	$(\bar{x}, \bar{v}, \bar{u}, \bar{z}, \bar{y})$	
10 m2		5	$(\bar{x}, v, \bar{S}, y, z)$	$(\bar{x}, y, \bar{S}, v, u)$	
			$(\bar{x} + \frac{1}{2}, v, \bar{S}, y, z)$	$(\bar{x}, y, \bar{S}, v, u)$	
10/mmr	n	5	$(x, \vec{v}, S, \hat{y}, \hat{z})$	(x, v, u, z, y)	$(\bar{x}, \bar{y}, \bar{z}, \bar{u}, \bar{v})$
			$(x + \frac{1}{2}, \vec{v}, S, \vec{y}, \vec{z})$	(x, u, v, z, y)	$(\bar{x}, \hat{y}, \bar{z}, \bar{u}, \bar{v})$
			$(x, \vec{v}, S, \vec{y}, \vec{z})$	$(x + \frac{1}{2}, v, u, z, y)$	$(\bar{x}, \bar{y}, \bar{z}, \bar{u}, \bar{v})$
			$(x + \frac{1}{2}, \vec{v}, S, \vec{y}, \vec{z})$	$(x + \frac{1}{2}, v, u, z, y)$	$(\bar{x}, \bar{y}, \bar{z}, \bar{u}, \bar{v})$
			4		
8 8	(001), (100)	5	$(x + p/8, u, v, z, \bar{y}) p = 0,, 4$		
		5	$(\bar{x}, \bar{u}, \bar{v}, \bar{z}, y)$	(=)	
8/m		3	(x, u, v, z, \bar{y})	(\bar{x}, y, z, u, v)	
			$(x + \frac{1}{2}, u, v, z, \bar{y})$	(\bar{x}, y, z, u, v)	
			(x, u, v, z, \tilde{y})	$(\bar{x}, y + \frac{1}{2}, z + \frac{1}{2}, u + \frac{1}{2}, v + \frac{1}{2})$	
			$(x + \frac{1}{2}, u, v, z, \bar{y})$	$(\ddot{x}, y + \frac{1}{2}, z + \frac{1}{2}, u + \frac{1}{2}, v + \frac{1}{2})$	

T. Janssen, *Physics Reports*, 55 -113, <u>168</u> (1988).

Materials systems solved with higher dimensions

Dendritic aggregate of Al-Li-Cu alloy.

Single grain of the Al-Li-Cu alloy.

Pentagonally twinned Ge precipitate in Al matrix.

Ch. Janot and J.M. Dubois, J. Phys. F: Met. Phys., 2303-2343, **18** (1988).

Programs for solving in higher dimensions

 DIMS Direct Methods for Incommensurate Modulated/Composite Structures - Fan, Hai-fu & colleagues http://cryst.iphy.ac.cn/VEC/Tutorials/DIMS/DIMS.html

 Fullprof Rietveld - Juan Rodriguez-Carvajal and WinPlotr Interface -T. Roisnel Jana2000 http://www-llb.cea.fr/fullweb/powder.htm

 JANA2000 Single Crystal and Powder Diffraction Software - Vaclav Petricek

http://www-xray.fzu.cz/jana/jana.html

• XND Rietveld - Jean-Francois Berar http://www-cristallo.grenoble.cnrs.fr/xnd/xnd.html

In Summary

- Special structural properties IMS and quasicrystals show the need for a more detailed crystallography.
- Quasiperiodic functions and aperiodic tilings help prove that long-range order does not require periodicity, just non-random packing.
- Embedding quasicrystals and IMS in higher dimensions leads to periodic structures that follow the rules of ordinary crystallography.