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We report a high-resolution, small-angle x-ray study of aggregated gold colloids over the range
0.0003 t0 0.08 A~!. We are able to fit our data with a simple model that correctly accounts for non-
fractal short-range order with a crossover to long-range fractal correlations. This provides new in-
formation on the structure of real aggregates, and new insight into the aggregation processes which

lead to their formation.

PACS numbers: 64.60.Cn, 05.40.+j, 61.10.Lx, 82.70.Dd

What is the structure of an aggregate? Several years
ago, Witten and Sander! showed that aggregates can be
statistically scale-invariant objects, physical realizations
of mathematical fractals? which appear the same on all
length scales. This property manifests itself in a
power-law dependence of the density-density correla-
tion function, i.e., G (r) ~ rP =9 where d is the spatial
dimension and D is the fractal dimension (D < d).
These results have been elucidated by computer simu-
lations of several different models including the
diffusion-limited aggregation (DLA) model,"? the
diffusion-limited cluster aggregation (DLCA) model,*
and the reaction-limited cluster aggregation (RLCA)
model.> Experimentally, aggregates of gold colloids®?
and silica particles’!! have been studied with light,
neutron, and low-resolution x-ray scattering. The em-
phasis of most studies to date has been the fractal na-
ture of the aggregates. However, in reality, objects can
be scale invariant only over a limited range, and an
understanding of the bounds of the fractal regime is
crucial in the development of a complete picture, not
only of aggregates, but of fractal objects in general. In
particular, as we shall see, the short-range order, or
correlations of the nearest neighbors, cannot be treat-
ed as fractal. However, these correlations play an im-
portant role in determining the physical properties of
the ultimate structure and, in addition, offer important
clues about the interparticle interactions involved in
the aggregation process itself. In this paper, we report
the results of a high-resolution x-ray scattering experi-
ment using colloidal gold aggregates, and present data
that extend over both the conventional light and
small-angle x-ray and neutron scattering regimes. This
study, with momentum transfers (length scales) con-
tinuously ranging from 0.0003 A~! (~ 3000 A) to
0.08 A~! (~10 A) and on samples comprising over
108 clusters, provides the most definitive probe of the
fractal structure of aggregates. The excellent statistics
and the wide range of these data allow us to probe both
the fractal regime of the aggregate structure and the
crossover regime where the nonfractal short-range or-
der dominates. A simple model is developed to ac-
count quantitatively for these data, and the short-range

correlations thus determined are related to the kinetic
growth processes that form the aggregate.

Three samples of aggregated gold colloids comprised
of —~ 75-/°\-radius, polycrystalline gold balls® were
studied. The colloids were aggregated by reduction of
the charge on the surface of the particles causing them
to stick upon diffusion-induced collision. In one case,
the charge was completely removed so that the dif-
fusion of the clusters was the rate-limiting process,
resulting in DLCA. In the second case, the charge was
only slightly reduced, so that the actual chemical bond
formation was the rate-limiting process, resulting in
RLCA. The scattering was done from clusters large
enough to precipitate, thus increasing the volume frac-
tion of gold from its initial value of 10~ ° to roughly
1073, The precipitate solution was placed between two
0.127-mm Kapton sheets. The experiment was done
on beamline VI-2 at the Stanford Synchrotron Radia-
tion Laboratory with 1.54-A x rays. We used a dou-
ble-bounce Si(111) monochromator and a triple-
bounce Si(111) analyzer in the nondispersive con-
figuration to obtain a sharp Gaussian in-plane resolu-
tion function with rms width 6x10~5 A~!. The out-
of-plane resolution function was determined by a set
of extremely narrow slits, yielding a Gaussian out-of-
plane resolution function of rms width 3.4x10~% A~ L.
The sharpness of the resolution function enabled us to
reach momentum transfers of 0.0003 A~! before we
were swamped by the main beam.

Figure 1 shows the background-subtracted data for
the RLCA sample, corrected for the transmission fac-
tor. At small Q, the data clearly show power-law
behavior reflecting the long-range fractal correlations,
while at large O, the behavior is dominated by the
form factor of the individual gold balls comprising the
aggregate. However, a model which includes only a
fractal S(Q) modified by the form factor of a single
gold ball, as was used to account for previous neutron-
and light-scattering data from gold aggregates,® cannot
describe the present, more extensive data. To account
for these data we must include short-range nonfractal
correlations. Physically, we expect that G (r) ~ r? 3
should only be valid for r greater than a few ball diam-
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FIG. 1. Background-subtracted data of RLCA sample.
The solid line is a fit by our model (see text). The range in
Q probed corresponds to length scales of ~ 3000 A (0.0003
A1) to ~10 A (0.08 A™'). The background level was
~ 1% of the total signal.

eters. For shorter distances, we can model the aggre-
gate as being comprised of hard spheres in close con-
tact. If we assume an isotropic aggregate, the correla-
tion function can be expressed in the following form
(see Fig. 2):

5(r) +(z)/4ncP)o(r—o) (r <o),
G(r)=1z,8,(r) (o<r<22a), (1)
A;BrP =3¢t (r>20).
The & function at the origin is due to self-correlations.
The & function at r = o, where o is a ball diameter, re-
flects the presence of nearest neighbors in hard contact

with the ball at the origin. Thus, z; is the coordination
number of this first shell. The second line of Eq. (1)

G(r)

r° ~-3eAr/£

L >
o 20 r
FIG. 2. Correlation function G (r) used in our model [see
Eq. (D]

represents the second shell, whose presence was in-
ferred from computer simulations of both random-
packed hard spheres'? and DLCA aggregates.'*> g,(r)
is a second-order polynognial fit to the hard-sphere
simulation data with 4 [ “g,(r)r¥dr =1 so that z, is
the second-shell coordination number. We found that
including this term made the fits somewhat better but
was not essential. The last line of Eq. (1) describes
the crossover to long-range fractal correlations. (A
correlation length £ has been included to account for
overlap among clusters,!° but because of their size, it
was found to be effectively infinite.) B is a constant
defined so that G (r) is continuous at r =20 when
A;=1, ie., 2,82(20) =B (20)P3e~29/¢. 4, there-
fore measures the amplitude of the fractal term rela-
tive to the second-shell term at r =20. There are thus
four adjustable parameters in the model: D, z;, z,,
and Af

The structure factor for the aggregate is then given
by the Fourier transform of G (r):

S4(Q) =1+2,5inQ0/Q o+ (4m2y/Q) [ rax(r)sinQr dr + (4mA;B/Q) [ =2 ="¢sinOQr dr. 2)

The second integral in Eq. (2) can be expressed as an incomplete gamma function and evaluated numerically by
series expansions. The actual measured intensity is given by

1(Q = [ 170" 25, (QIR(Q-Q)d°Q’,

3)

where f(Qr,) is the form factor of a gold ball of radius ro and R (Q— Q') is the resolution function discussed ear-

lier. For small-angle scattering geometry, we can take

R(Q-Q) ~expl—(Q,— Q)20 exp(— Q,;%/202)8(Q)),

where Q, and Q, are in the scattering plane, and the scan is done along Q,. As stated earlier, o, =6X 1075 A~!
and o,=3.4x10"* A~ L. Proper inclusion of the resolution function is essential as it will always result in the fitted
fractal dimension being slightly larger ( ~ 10% in our experiments) than if it were measured directly from the data.
It is also necessary to consider the effects of polydispersity in the analysis. So far it has been assumed that the
gold balls are uniform in size. If this were true, the first minimum in the form factor at — 0.06 A~ would be
identically zero resulting in a sharp dip where we see only a shallow one. In a polydisperse system we have

5(Q) = % S15(Q) 12+ -1]\7 3 £(Q)f (QexpliQ- (r,—1)],
i i=j
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or, replacing the sums by averages, we can substitute

|£COro) 125, (Q) — (1F(Qr) 12y + 1{f(Qro)) IP[S,(Q) —1]

in Eq. (3), where ( ) signifies an average over the distribution of ball sizes. If the distribution is Gaussian, then

for any function 4 (ry),

1
<h(ro)>=mﬁ

where 7 is the mean radius, and §p is the rms width.
The normalization constant is based on the assumption
that the unphysical range ( — o, 0) contributes negligi-
bly in the integral if 8, is small compared with 7.
We found empirically that 7=79 A and 3p=0.1r re-
produced the position and size of the dip in the
RLCA data. This is actually consistent with pre-
vious transmission-electron-microscopy measurements
which found 7~ 75 A and rms deviations from 8% to
13%.1* Different values for the polydispersity did not
affect the fits greatly. Polydispersity will also smear
the form of S,(Q) in Eq. (2), but these effects were
investigated and found to be unimportant.

The result of the fitting of Eq. (3) to the RLCA data
is shown in Fig. 1. We find that D =2.20, a number
somewhat higher than previous results.” This number
is essentially model independent (not including resolu-
tion effects), being determined primarily by the data at
small Q where the statistics are superior and short-
range effects are unimportant. The first-shell coordi-
nation number is z; = 2.33, which, considering this was
a free parameter, is not unreasonable for such a tenu-
ous object as an aggregate. (In his simulations of the
DLA model, Meakin® found z;=2.25.) Also, z,
=3.95, which is larger than z;, as it should be. The
parameter A, is 0.46, which is consistent with comput-
er simulations of random packed hard spheres!? and
aggregates.!> The small shoulder in the fit at Q ~ 0.04
A~ ! arises from the & function in G (r) at r = o and
probably reflects our imperfect knowledge of G (r).

Our model is not as successful in accounting for the
complete set of data for the DLCA sample, as shown
in Fig. 3. At small Q, unlike the RLCA sample, the
data had an upward turn which could not be explained
by the present model. The origin of this will be dis-
cussed shortly. However, if we use only the data
above 0.002 A~! a good fit is obtained with our
model. The value of D =1.73 obtained for the fractal
dimension agrees with previous measurements®’ and
is consistent with the DLCA model in three dimen-
sions.* Interestingly, we obtain z;=3.14, which is
substantially higher than the RLCA sample. The other
fitted parameters were z,=4.86 and 4,=0.43. As a
test, we also fitted the RLCA data only using the
points with Q > 0.002 A~ to see if it significantly af-
fected the fit, but it did not. A second DLCA sample
was studied with similar results to the first except that
its transmission factor for x rays was 200 times greater.

" h(ro)expl = (ro— )%/ 263 )dr,,

This should rule out any multiple-scattering effects in
these experiments.

An important result obtained by the fitting of our
model to the data is that the first-shell coordination
number for the DLCA sample is larger than for the
RLCA sample, even though an aggregate prepared by
DLCA is less dense.® It is known that in DLCA the
potential between balls consists solely of an attractive
van der Waals interaction, while in RLCA there is a
Coulombic repulsion.” Presumably, then, in the early
stages of the aggregation process, it is more favorable
for a ball to stick to several balls in DLCA (z;, > 2),
but to only one ball in RLCA (z;~2). As the clus-
ters get larger, however, these same properties in the
potential will allow clusters formed by RLCA to inter-
penetrate more deeply, while in DLCA they will stick
at the first contact, forming a less packed, more tenu-
ous structure. These differences in first-shell coordi-
nation number can be expected to have large effects
on the physical properties of the resultant aggregates,
such as their conductivity and mechanical strength.
Thus, our interpretation of these measurements pro-
vides insight into the early stages of the aggregation
process and the effects of realistic interparticle poten-
tials. Such interactions have not as yet been included
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FIG. 3. Background-subtracted data of DLCA sample No.
1. The solid line is a fit to our model using only the data
points above 0.002 A~!, but extended to smaller Q to show
how the slope in the data increases there. The effective
length scales and background level are the same as in Fig. 1.
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in any simulations.

Finally, we discuss the upward turn at small Q in the
DLCA data. We believe that this reflects a restructur-
ing of the aggregates,!!"!> which results in an apparent
increase in the power law of the scattering at small Q,
for distances greater than ~ 1000 A. While this im-
plies that the density is decreasing less rapidly than at
shorter length scales, we cannot confirm that this large
scale structure is fractal. It is significant that we ob-
serve this effect only for the DLCA samples which
have lower fractal dimensions and are thus more tenu-
ous and presumably structurally weaker than the
RLCA sample. Further confirmation of this behavior
was obtained from light-scattering measurements cov-
ering the range 2.5x107* A-!=Q=<3x10"3 A~ L
Freshly prepared aggregates exhibited a clear fractal
behavior with D ~— 1.75, while those that had been
aged several days and subjected to shears similar to
those of the x-ray samples showed an apparent fractal
dimension of D ~ 2.4, which is roughly the same as
the small-Q slope in the x-ray data. Similar observa-
tions have been reported for DLCA silica aggregates.!!
We note, however, that the x-ray data show that at
short length scales the original fractal structure is
preserved, while the restructuring occurs primarily at
larger length scales.

In conclusion, we have shown that a more physical
model of an aggregate which includes the short-range
order is capable of accurately describing our data. The
aggregates we have studied are consistent with a fractal
interpretation over the length scales we have probed.
However, it is crucial to include the short-range order
to interpret the scattering data correctly. In so doing,
it is also possible to extract information about the ef-
fects of interparticle interactions on the aggregation
process.
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