Vanadium Nanoparticle Catalysis

UCSB MRL RESEARCH EXCHANGE TEACHER: ADAM GAMBOA

Visiting Scholar: Daniel Hirche Principal Investigator: Mike Gordon, PhD

Funded UCSB MRL and US Dept. of Energy

Catalyst: (n) anything that speeds up a chemical rxn but isn't consumed in the process

Examples of Catalysis

- 1. **Biochemistry**: enzymes speed up important rxns in the body
- 2. **Refineries**: metallic oxides are used crack long chain hydrocarbons into gasoline
- 3. Automotive: Catalytic converters aid in complete combustion of criteria pollutants (CO, unburned HC's, NO_x etc.)

Pathways for a Catalytic Reaction

http://www.chemgapedia.de/ vsengine/vlu/vsc/de/ch/10/ makrokinetik/ einfuehrung_makrokinetik/ einfuehrung_makrokinetik.vlu.html

der Volumenphase

Background: Bulk Catalysts vs. 2-D Catalysts

- Traditionally larger "bulk" catalysts are used
- Bulk catalysts require more material than nanoparticles
- More importantly bulk particles have different chemical properties than 2-D catalysts
- 2-D catalysts behave chemically according to quantum mechanics

Motivation: Maybe nanoparticles are better catalysts?

- Enhanced catalytic properties
 - Higher Conversion/ Selectivity
- Less costly
 - Less material costs
- Increased Value as conversion increases while costs of production decrease

Increased surface area per unit weight for nanoparticle substrates

Methods Overview

BET Measurements

- Brunauer-Emmett-Teller
- Aims to explain the adsorption of gas molecules on surfaces
- Determines the total surface area of a porous substrate (Outer area + pore area)
- Determines the pore volume

Catalyst Synthesis

- Precipitation, ultrasonication and polymerization methods
- Incipient wetness impregnation of V_2O_5 nanoparticles and bulk V_2O_5 on SiO₂ and TiO₂ substrates

Catalyst Testing

- Benchmark testing of substrates (SiO₂ and TiO₂)
- 0.5 wt % V₂O₅, 1.5 wt % V₂O₅, 3.0 wt % V₂O₅ samples
- Oxidative dehydration of methanol to formaldehyde
- Temperatures ranging from: 180 °C to 320 °C

BET: SiO₂ Adsorption/Desorption Isotherms

Template-free Hydrothermal Approach

 $0.5 \text{ gV}_2\text{O}_5 \text{ powder}$

is magnetically

stirred into 20 mL of DI water. Then

10 mL of ethylene

glycol is added.

Autoclave

14 hours at 180 °C

Black Precipitate

Filtered. Washed with water and EtOH.

Dried in air for 12 hr @ 50 °C

Pre-Calcined

105 - 1931

Post-Calcined

Calcined in air for 1 hr @ 400 °C

92.4% yield

Qin, M. et al., Journal of Power Sources, 2014, 268, 700-705

Solvothermal rxn w/ calcination

0.77 g NH₄VO₃ + 1.25 g oxalic acid + 10 ml deionized water

35 ml Isopropanol is added then sol'n is centrifuged

teflon lined stainless steel autoclave for 6 h @ 200 °C

10

washed with DI water and EtOH Dried overnight then calcined for 2 hr @ 350 °C

Liang, C. et al, Journal of Power Sources, 2014, 272, 991-996

Catalyst Testing: Compare rxn conversion using nanoparticle catalysts

Catalyst of interest:
V₂O₅ nanosheets
Reaction of interest:
Oxidative dehydration of methanol to formaldehyde

Special thanks to the bros that made it all possible...

Daniel Hirche

Visiting scholar from Munchen. Instrumental in keeping me guided through 5 weeks of intense research.

Mike Gordon, PhD

Talented principal investigator. Clear and articulate explanations of key concepts. Always there for his students. In touch with the spirit of grad school.

Frank Kinnaman

The man that got it all started. A great communicator and facilitator of talent. Thank you for placing me with the Gordon Lab.