Bovine Neurofilament Interactions Research Experience for Teachers (RET) at University of California, Santa Barbara

Faculty Supervisor: Professor Cyrus Safinya Mentor: PhD Candidate Joanna Deek Undergraduate Assistant: Bernice McLaurin Funding by National Science Foundation & National Institute of Health

Introduction

 Neurofilaments, which make-up part of the cytoskeleton of neurons found in the spinal cord, may play a role in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), Parkinson and Alzheimer disease.

Neuron

Project Goals:

- Overall Goal: To understand the interactions between neurofilaments.
- Project Goal: To understand the specific effects of salts on neurofilament interactions.

Experimental Methods

Purification Yield ~ 12 mg of total NF protein

Experimental Methods

Bovine Spinal Cord Extraction

Experimental Methods

Purification Yield ~ 12 mg of total NF protein

Anion exchange chromatography using various buffers.

 Collect different subunit neurofilaments in a fraction collector.

Collecting the Three Types of Subunit Neurofilaments

- 1. Low
- 2. Medium
- 3. High
- Confirmation of neurofilaments: Bradford test and acrylamide gel electrophoresis.

Acrylamide Gel Electrophoresis Neurofilament Protein Data

High-Med-Low

Med-Low

KDa = 1g/mol

Experimental Methods Continued

Reassemble neurofilaments into desired subunit ratios using dialysis.

Understanding neurofilament interactions

 If neurofilaments have electrostatic interactions, then salts will effect the neurofilament interactions.

Neurofilaments in different subunit ratios are treated with different concentrations of salts.

- Potassium chloride
- Magnesium chloride
- Spermidine hydrochloride
- Spermine hydrochloride

Treated neurofilaments are made into hydrogels and are put into capillaries for analysis.

Sol Phase:

 Tested for neurofilament using a Bradford protein assay

Hydrogel:

 Analysis of Neurofilaments

Bradford Protein Assay

 We use a spectrophotometer to determine the light absorbance of our samples, which will determine our protein concentration in our experiment.

Experimental Samples

No Protein

Lots of Protein

UV-Visible Spectrophotometer

Figure 25.30 Spectrophotometer and spectrum of Cu2+

Bradford Data

[[y (absorb.) + 0.0185]/0.018]/5ml = x (protein conc.)

Bovine serum albumin (BSA) = Known protein standard

		Absorban		
	Absorbance	ce	Volume	Final
Sample	Absorbance 1	1 (Data	of	Sample
Number	(Recorded	with no	Sample	Concentrati
Number	Data)	negative	Used (uL)	on
	Dala)	Data)	Osea (aL)	(mg/mL)
1	0.016	0.016	5	0.38
2	0.028	0.028	5	0.52
3	0.019	0.019	5	0.42
4	0.005	0.005	5	0.26
5	0.006	0.006	5	0.27
6	0.009	0.009	5	0.31
7	0.002	0.002	5	0.23
8	0.008	0.008	5	0.29
9	0.002	0.002	5	0.23
10	0.005	0.005	5	0.26
11	0.002	0.002	5	0.23
12	-0.004	0	5	0.21
13	0.001	0.001	5	0.22
14	0.004	0.004	5	0.25
15	0.017	0.017	5	0.39
16	0.001	0.001	5	0.22
17	0	0	5	0.21
18	-0.002	0	5	0.21
19	0	0	5	0.21
20	-0.003	0	5	0.21
21	0.001	0.001	5	0.22
22	0.003	0.003	5	0.24
23	0.003	0.003	5	0.24
24	0.003	0.003	5	0.24
25	0	0	5	0.21
26	0.001	0.001	5	0.22
27	0.034	0.034	5	0.58
28	0.001	0.001	5	0.22
29	0.001	0.001	5	0.22
30	-0.27	0	5	0.21

Treated neurofilaments are made into hydrogels and are put into capillaries for analysis.

Hydrogel Analysis:

- Light Microscopy
- TransmissionElectronMicroscopy (TEM)
- Small angle X-ray Scattering

Light Microscopy Data

- Images A and C have birefringent properties because they have rotated light and are nematic gels. Nematic gels contain alligned neurofilaments.
- Images B and D have not rotated polarized light and are isotropic gels. Isotropic gels have neurofilaments that are not ordered.

Light Microscopy Phase Diagram Data

 N_G = Nematic gel I_S = Isotropic sol/gel

Phase diagram is constructed to understand phase behavior.

Small Angle X-ray Scattering

d-value is the average distance between neurofilaments for a salt treated sample.

TEM Data

I12.tif I12

Print Mag: 4570x @ 7.5 in 16:03 07/08/09

10 microns

HV=80kV

Direct Mag: 3000x

TEM Data

121.tif 121

Print Mag: 30100x @ 7.5 in

11:17 07/09/09

500 nm

HV = 80 kV

Direct Mag: 20000x

General Conclusions

- High neurofilaments have more repulsive forces because they are less ordered based on light microscopy and small angle X-ray scattering data.
- Medium neurofilaments have more attractive forces.

Personal Conclusions & Thanks

- Science and research is fun! Thank You:
- Mentor PhD Candidate: Joanna Deek
- Undergraduate Assistant: Bernice McLaurin
- Faculty Supervisor & Group:
 Professor Cyrus Safinya & Safinya
 Group
- Dr. Martina Michenfelder & RET
 Staff

