Developing Dendritic Drug Carriers

Jenny Willis

Mentor: Roey Amir

Researcher: Lorenzo Albertazzi

Faculty PI: Craig Hawker

Funded by: NSF

Developing Drug Carriers

 Our research goal was to develop a small trackable carrier loaded with cargo molecules that will go into cells and then release the cargo (drug, dye, etc.).

A (very) simple picture

How did we accomplish our goal?

- Building a dendrimer as the carrier for the cargo
- Attach dyes that simulate a drug
- Trackable: monitor where dyes are released and what happens to dye and dendrimer in the cell

What is a dendrimer?

- A branched synthetic macromolecule (polymer)
- Its architecture is based on molecular branches that spread out from a central core.
- A dendrimer is 'grown' in layers (or generations).

Benefits of a dendrimer:

- Can control the surface and internal groups
- Many functional end groups
- Monodisperse (same molecular weight)

Dendrimers as Cancer Therapy

Conventional design

Our design

Functional group inside

Synthesis: 1st Generation

PEG epoxide

$$H_2N \leftarrow 0 \longrightarrow NH_2 + 0 \longrightarrow NH_2 + 0 \longrightarrow NH_2 \longrightarrow NH_$$

- Precipitate with ethyl ether to isolate product.
- Filter product to separate solid.
- Vacuum oven for 24hrs to dry product.

Synthesis of 2nd Generation:

- Sparged with Ar: radical will not react with O₂
- Under UV light: 2 thiol radicals (S•)
 react with triple bond

 Filter by dialysis with MeOH to get rid of excess thiol

Synthesis of 3rd Generation:

- Precipitate with ethyl ether
- Filter product
- Vacuum oven for 24hrs.

Synthesis of 4th Generation:

- Sparged with Ar
- Under UV light
- Filter by Dialysis with H₂O in centrifuge tube (cut-off 3000) to remove excess

Dendridic platform without the dye

JW-6

Nuclear Magnetic Resonance (NMR)

Adding dye to periphery: checking surface groups

Flouroscene (FITC)

Internalization of the dye on periphery. (fluorescence)

Attaching the dye (coumarine):

Adding surface groups:

Nuclear Magnetic Resonance (NMR)

Attaching Alexa647 (infrared dye):

Results: Internalization of both dyes attached to dendrimer.

Conclusion:

- We were able to successfully internalize the dendrimer with the dyes inside melanoma cells.
- Possible future applications: Drug carriers

