TEP Precursor Measurement Method Studies

Uta Passow

PASSOW LAB Julia Sweet Jonathan Jones Simone Francis TJ Jenarewong Johnson Lin Margarita McInnis Suzanne Squires

TEP (Transparent exopolymer particles)

- A natural/biological phenomena in the ocean that moves carbon down to the bottom of the ocean (biological pump)
- The critical "glue" that holds biological debris as they aggregate and sink through the water column
- These larger aggregates sink down to the bottom of the ocean thereby removing carbon from the atmosphere
- ¹/₄ of all carbon that is released by fossil fuel is pulled out of the atmosphere with this process
- Can be stained and measured

TEP-Precursors

- Released by marine phytoplankton, bacteria and many other organisms
- Scientists think that these precursors are more abundant than TEP
- No current method to stain or measure

PROBLEM

Develop a method to measure the precursors of TEP (transparent exopolymer particles) (might take several years to complete OR not work)

BEFORE the trials Calibrated Alcian Blue solution

Assign a value (F-factor) that measures the strength of the stain. F-factor is the inverse of the slope of the mg of Gum Xanthan vs. absorption

Mass of Gum Xanthan = Pre-weigh, add solution, filter, weigh

Absorption value = Add solution, filter, stain, rinse, filter · sulfuric acid – measure absorption

Before the trials "Artificial TEP-Precursor" Solution

Gum Xanthan: .0002 grams

Filtering Apparatus filter through the .4 um filter

Homogenize

Step 1 of Hypothesized Precursor Method Testing Materials To Extract TEP-Precursors Glass Wool Trials

Filter Apparatus

Silanized Glass Wool – chemically treated

Glass Wool

Glass Wool

Sample	Absorbance
Glass Wool Blank	0.1506
Glass Wool	0.1423
Silanized Glass Wool Blank	0.0933
Silanized Glass Wool	0.078

Silanized Glass Wool

Glass Wool Samples

Glass Wool Blank (MilliQ water – stain – rinse) Glass Wool (Precursor solution – stain – rinse) Silanized Wool Blank (MilliQ water – stain – rinse) Silanized Wool (Precursor solution – stain – rinse)

Glass Wool Trials

Future Trials

- Sample size adjustment
- Filter through column into graduated cylinder
- Try other materials such as cartridges, glass beads
- Work on rinsing techniques
- Eliminate glass wool sample too absorbent

Cylinder filtration

Cartridges

My Experience

- Dynamic interdisciplinary
- Tools in the lab
- Data collection techniques
- Role of student
- Ability to experiment
- Collaborate with colleagues

THANK YOU

