Synthetic Biology

Megan Cotich La Colina Junior High School Santa Barbara, Ca

University of California, Santa Barbara Materials Research Laboratory Research Experiences for Teachers II Breaking it Down and Putting it Back Together

7th Grade Life Science Teacher → Synthetic Biologist

Next Generation Middle School Life Science and Engineering

Common Core Reading, Writing, Listening, Speaking

RET I: Expression of gut fungal cellulase in a bacterial host

 Current practice allows the creation of bio-fuels from agriculture (corn, etc.)

* The use of agricultural waste would present higher yields without the cost, acreage, and societal impacts of large grain production

Principal Investigator, Michelle O'Malley, with P. finn fungus used in the lab

RET I: Expression of gut fungal cellulase in a bacterial host

* The purpose of this research is to use bacterial plasmids to create chemicals on a large scale

Uses and applications include:
Pharmaceuticals
Bio-fuels Fermentation to Ethanol Goal: Convert sugars to ethanol using microbes nial Fermen Glucose and other Biorefiner Microbes ferment sugars to ethanol, which is then separated from the mix of ethanol, water, microbes, and residue and purified through distillation

RET I Project Goals

Clone cellulase, an enzyme from P. finn fungus Recombinant

* Transform into E. coli bacteria

* Ultimately it will be able to break down biomass in order to make chemical products E. coli host cell

DNA

Transformed

E. coli cell

RET I – RET II

How does this translate to 7th grade life science?

University Research 50 min Junior High Period

Synthetic Biology in 7th Grade

Essential elements of cell biology and genetics Teach genetic engineering without oversimplifying the process Real world applications of synthetic biology

Next Generation Sci. Standards

- * LS1.A: Structure and Function: special structures are responsible for particular functions
- * LS1.B: Growth and Development of Organisms:
- * LS1.C: Organization for Matter and Energy Flow in Organisms
- LS2.A: Interdependent Relationships in Ecosystems
- * LS3.A: Inheritance of Traits
- * LS3.B: Variation of Traits
- LS3.2 Using models to show asexual vs. sexual reproduction and resulting variation

- < LS4.D: Biodiversity and Humans
- Developing and Using Models to describe, test, and predict more abstract phenomena and design systems
- Influence of Science, Engineering, and Technology on Society and the Natural World
 - PS1.B: Chemical Reactions
- ETS1.B: Developing Possible
 Solutions
- * ETS1.C: Optimizing the Design Solution

Common Core State Standards

* Reading:

- Cite specific textual evidence
- Follow precisely a multistep procedure when carrying out experiments
- Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

* Writing

- * Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- * Write arguments focused on discipline-specific content

- Writing Continued:
 - * Support claim with evidence and reasoning
 - * Conduct short research projects
 - * Gather relevant information from print and digital sources
 - * Draw information from informational texts to support research and reflection

* Speaking and Listening

* Engage in a range of collaborative discussions, building on others' ideas and expressing their own clearly

Module 1

Synthetic Biology Intro

1.1 Synthetic Biology Intro

- Introduction to the unit through PowerPoint presentation and dialogue
- Presentation of current synthetic biology research and methods
- Vocabulary development
- Preliminary reflection
- Standards: LS1A, influence of science on society

Definition

- Synthetic Biology is the design and construction of new biological components
- Enzymes
- Genetic circuits
- Cells
- Combines biology and engineering
- Understanding how life works and how to use it to benefit society

Key Vocabulary

Plasmid	Enzyme	PCR (polymerase chain reaction)	Ligate
Bacterial in origin, extra- chromosomal, circular, double- stranded DNA, much smaller than the genome Bacterial DNA Plagnids	A substance produced by a living organism that acts as a catalyst to bring about a specific biochemical reaction.	To amplify a piece of DNA, generating thousands to millions of copies of the sequence	To link two ends of DNA or RNA
8000			<u> </u>

2.1 How Small is Really Small?

 Conceptualize the size and scale of the individual components used in synthetic biology

* Card sort

Na	me:		Per:
H		How Small is Really Small?	
		Arrange the items (on the Popsicle sticks) from LARGEST	→ smallest
- #	# Name	P	Size
1	1		
2	2		
3	3		
4	4		
5	5		
(5		
7	7		
8	3		
9	9		
1	0		
Sy	nthesis:		

1. What size surprised you the most and why?

In this unit, we will learn about a range of items from a cell, to a gene and enzymes. What do you estimate this size range to be in nanometers (nm)? What did you base your estimate on?

2.2 Enzymes Break it Down

- Demonstrate how enzymes change the chemical properties of substances
- Vital for life functions (ex. digestion), and for synthetic biology
- Iodine on chewed up saltine crackers will present a color change to show presence of enzymes

2.3 Microbiology + Presentations

- Introduction to microbes and their role in synthetic bio
- Small group research and presentations on subfields of microbiology

Project Description

- In groups of 4-5, research one of the seven subfields of microbiology on iPad's and make a Google Presentation
- Include a general description of this field of microbiology
- Explain the role of microbes in research and development
- Highlight 2 careers in this field including average salary
- Explain at least one current area of research (the latest breakthroughs)

2.3 Presentation Rubric

Field of Microbiology: ...

Microbiology Presentation

	Poor	Satisfactory	Excellent
Slide 1: Title	Names Only	Names and Field of	Names, Field of Microbiology,
Page	(0 pts)	Microbiology	Graphic
Initials		(1 pts)	(2 pts)
Slide 2: General	Not bulleted, too brief,	Bulleted, too brief, graphic is	Bulleted, thorough, graphic is
Description	graphic doesn't relate	not relevant to field	relevant to field
	(1 pt)	(2 pts)	(3 pts)
Initials			
Slide 3: Role of	Not bulleted, too brief,	Bulleted, too brief, graphic does	Bulleted, thorough, graphic
Microbes	graphic doesn't relate	not show microbe in action	shows microbe in action
	(1 pt)	(2 pts)	(3 pts)
Initials			
Side 4: Careers	Not bulleted, too brief,	Bulleted, too brief, graphic does	Bulleted, thorough, graphic
in Microbiology	graphic doesn't relate	not show career choices	shows career choices
	(1 pt)	(2 pts)	(3 pts)
Initials			
Slide 5: Current	Not bulleted, too brief,	Bulleted, too brief, graphic does	Bulleted, thorough, graphic
Research	graphic doesn't relate	not relate to current research	relates to current research
	(1 pt)	(2 pts)	(3 pts)
Initiala			
Aacthotice	Fonts are hard to read on	Poodoblo, but toxt is not	Organized clear images
Aesthetics	hackground color	organized background is	background complements
	distracting no nictures	distracting some nictures	images and font color
	(1 pt)	(2 nte)	(3 nte)
Oral	(1 pt)	(2 pts)	All members spelte and
Dresentation	Not prepared, group was	on the tonic at least 1 percen	An members spoke and
Fresentation	audience's questions	seemed unknowledgeable	Questions were answered
	(1 pt)	(2 ntc)	Questions were answered
	(1 pt)	(2 pts)	(2 ptc)
Saving and	Presentation is saved on	Presentation is saved on Google	Dresentation is saved on
Sharing	another format and not	Drive but not shared with group	Google Drive and shared with
Sharing	loaded on presenting	members or teacher	all members and teacher
	computer	(2 nts)	(2 nts)
	(0 pts)	(2 pts)	(2 pts)

2.4 DNA Extraction Lab

- Inquiry based DNA extraction
- Reading of informational text to write procedures
- Multiple trials encouraged to improve procedures
- More authentic lab experience...failure is inevitable

Wheat Germ DNA Extraction

Failure, to some level, is inevitable in this lab. Learning this is a critical element of persistence in research.

Module 3

Putting it Back Together

3.1 Bacterial Resistance to Antibiotic Demo

- Demo begins at the start of the module to produce results by the end of the module
- Up close look at bacterial growth and effect of antibiotic
- Direct applications to 3.2 and 3.3

 Example of bacteria growth with inhibition zones

3.2 Recombinant DNA Lab

 Putting the components of Module 2 together

Give the students a
 "hands-on" approach
 to engineering as it is
 often very abstract

 To model the protocol involved with recombinant engineering

3.2 Recombinant DNA Lab

Human DNA Sequence

Bacterial Plasmid Sequence

Bacterial Plasmid Sequence

Restriction Enzymes

Restriction Enzyme carus

Directions: Cut out all 9 cards to test on your Human DNA and Plasmid

Human DNA Sequence

Directions: Cut out all 6 strips and tape them end to end in order from #1 -

1	L	1	2	3	3		4	5	5
Т	Α	G	С	Т	Α	Т	Α	G	С
G	С	Α	Т	Т	Α	Т	Α	Т	Α
G	С	G	С	С	G	С	G	Α	Т
G	С	Α	Т	G	С	G	С	Α	Т
С	G	Т	Α	Α	Т	Т	Α	Т	Α
С	G	Т	Α	Α	Т	С	G	Α	Т
Т	Α	С	G	G	С	Α	Т	Т	Α
Α	Т	Т	Α	G	С	Т	Α	Т	Α
G	С	Т	Α	Т	Α	G	С	С	G
G	G	Α	Т	Α	Т	Т	Α	С	G
С	G	Α	Т	С	G	G	С	Т	A
Α	Т	G	С	Α	Т	С	G	С	G
С	G	Т	Α	Т	Α	С	G	С	G
Α	Т	С	G	Α	Т	Т	Α	Т	A
G	С	Α	Т	Α	Т	Т	Α	Т	A
G	С	Α	Т	С	G	Т	Α	Α	T
G	С	G	С	G	С	Т	Α	Α	Т
С	G	С	G	Т	Α	Α	Т	G	C
С	G	Α	Т	С	G	Α	Т	Α	Т
С	G	G	С	Т	Α	Α	Т	Α	Т
G	С	G	С	С	G	Т	Α	Т	A
1	L	1	2	3	3		4	5	5

Directions: Choose 2 strips: 1 with the plasmid recognition site, and an antibiotic resistance gene. Cut them out and tape them end to end to n strand of DNA.

								Kov
G	С	С	G	Т	Α	T	A	Key.
C	G	G	С	G	С	<u>A</u>	_T_	I
j C	G	Α	Т	G	С	IA	ΤÌ	
· C	G	G	С	Т	Α	G	C!	
i A	Т	Т	Α	G	С	ic	G	
G	C:	Т	Α	G	С	1 <u>'</u> C	GI	
i A	Т	Α	Т	G	С	G	c!	·
G	c:	.A.	T	G	С	ΪT	Ai	Γī.
T	Ā	C	G	G	С	!A	ТΙ	- - 1 i
Т	Α	C	G	С	G	'G -	יז'	
Т	Α	Т	Α	Α	Т	G	C	
C	G	A	Т	Α	Т	Т	A	
Т	Α	G	C	G	С	Т	A	
Т	Α	G	C	G	С	С	G	
A	Т	A	Т	Т	Α	G	C	
Α	Т	G	С.	Т	Α	Α	T	
G	С	G	С	Α	Т	Α	Т	
G	С	G	С	Т	Α	С	G	
Т	Α	С	G	Α	Т	G	С	
C	G	С	G	С	G	С	G	
Т	Α	С	G	Т	Α	С	G	

V:				
,.		С	G	
rep		С	G	
- 1		Т	Α	
Am res		Ğ	C	
		Ğ	<u> </u>	
Tet		u	C	
		Engu	mo 1	
I Var		Elizy	me 1	
res		Т	Α	
		С	G	
		Т	Α	
		Α	Т	
		G	С	
		A	Т	
		Enzy	me 4	
		С	G	
		1	A	
		С	G	
		G	C	
		Α	Т	
		C	C	

sequences.

С	G	Т	Α	С	G
С	G	Т	Α	С	G
Т	Α	С	G	Т	Α
G	С	G	С	Α	Т
G	С	Α	Т	G	C
		А	Т	G	С
Enzy	me 1	Enzy	me 2	Enz	yme 3
Т	Α	G	С	С	G
С	G	G	С	Т	Α
Т	Α	С	G	Т	Α
Α	Т	С	G	Α	Т
G	С			Α	Т
Α	Т			G	С
Enzy	me 4	Enzy	me 5	Enz	yme 6
С	G	G	С	Α	Т
Т	A	G	С	Α	Т
С	G	G	С	С	G
G	С	С	G	G	С
Α	Т	С	G		
G	С	С	G		
Enzy	me 7	Enzy	me 8	Enz	vme 9

Recombinant DNA Lab

Students use the restriction enzyme cards to identify a location a each DNA strand that can be cut by one enzyme

3.3 Bacterial Transformation Simulation

- Continuation of 3.1 activity
- Transform
 recombinant
 plasmid into E.
 coli using actual
 lab methods
- * Students record lab protocol

https://www.classzone.com/books/hs/ca/sc/bio_07/virtual_labs/virtualLabs.htm

Module 4

Synthetic

Biology Ethics

(noge)

ploita

4.1 Syn. Bio. Ethics Debate

- Armed with the knowledge of how and why one would want to synthetically engineer organisms
- * Additional resources presented: TED Talk, NPR Story of the Day Podcast, ethics study report
- Students team up to debate both sides of the argument and use evidence to back up their claim

4.1 Debate Scaffolding & Rubric

Sentence Frames for Synthetic Biology Ethics Debate

Introductory argument

- 1. <u>Hook</u>: (Can be a question, fact, or short story. This is the way you engage your audience in what you have to say.)
- 2. Claim: (for or against): Evidence suggests that
- 3. Transition sentence: Our team will provide two points to support our claim.
- 4. Point 1: Our first point is that...
- 5. Point 2: Our second point is that...
- <u>Concluding sentence (restating the claim)</u>: Our team will provide sufficient evidence that...

Point 1

- 1. State your first point: This should not be evidence, but something you are going to prove.
- 2. Evidence: According to __(source)____, ___(evidence)_
- 3. Commentary: Explain why this is important or how it relates to your point.
- 4. Evidence: Another piece of evidence is...
- 5. Commentary: Explain why this is important or how it relates to your point.

Point 2

- <u>State your second point</u>: This should not be evidence, but something you are going to prove.
- 2. Evidence: The article/movie titled _____, suggests that _
- 3. Commentary: Explain why this is important or how it relates to your point.
- 4. Evidence: Secondly, it is important to note that...
- 5. Commentary: Explain why this is important or how it relates to your point.

Concluding Statement

- First sentence: (restate your overall claim with your two points) In conclusion
 ______ because ___(point 1)_____ and _____(point 2)_____
- 2. State what the other side may say: The other team may argue that ...
- 3. State why this is not correct: We think this is incorrect because ...
- <u>Transition sentence</u>: Further, we have two questions we would like the other team to address.
- 5. Question 1: First...
- Question 2: And second...

Group Member Evaluation

Directions: Score your group members on the assessment statements below. Place the number of points in the blanks below their name. **Be honest in your evaluations. Rewarding someone points for work they did not do is not fair to the group.** Total the points at the bottom. All group members' scores will be averaged from each evaluation sheet and recorded.

5 points	Strongly Agree
4 points	Very Much Agree
3 points	Agree
2 points	Somewhat Agree
1 Point	Somewhat Disagree
0 Points	Disagree

	dioup M	ember Na	mes.	
Your Name:				
Assessment:				
This person helped the group work hard to research, write the speech, and practice.				
This person completed their assigned work without a having to be re-directed by group members.				
This person did not spend time socializing with other groups.				
This person listened to the other group members ideas, and offered their own input.				
Total Score				

Crown Member Name

Acknowledgments

- * Dr. Kevin Solomon
- * Dr. Michelle O'Malley Lab
- * Frank Kinnaman
- * Marilyn Garza
- * Shannon Carpenter Yorke

