The innovation engine for new materials

Kinetic-Control of Micelle Templates for Precision Nanomaterials

Seminar Group: 

Speaker: 

Professor Morgan Stefik

Address: 

Dept. of Chemistry and Biochemistry
University of South Carolina

Date: 

Friday, May 25, 2018 - 11:00am

Location: 

ESB 1001

Host: 

Prof. Chris Bates

Few aspects are as prevalent and important to energy conversion and storage as the dimension control of porous nanomaterial architectures. The study of nanostructure-dependent electrochemical behavior, however, has been broadly      limited by access to well-defined nanomaterials with independent control over the pore and wall dimensions. This historic limitation is partially due to an overreliance upon dynamic self-assembly processes that are subject to the “tyranny of the equilibrium.” We have developed a kinetically controlled approach as a new nanofabrication tool kit. Kinetic control is historically difficult to reproduce, a challenge that we have resolved with switchable micelle entrapment to yield reproducible and homogeneous nanomaterial series that follow model predictions. This approach enables seamless access from meso-to-macroporous materials with unprecedented ~2 Å precision of tuning, commensurate with the underlying atomic dimensions. This precision and independent control of architectures also opens new opportunities for nano-optimized devices. 

1) Lokupitiya, H. N.; Jones, A.; Reid, B.; Guldin, S.; Stefik M.* Ordered Mesoporous to Macroporous Oxides with Tunable Isomorphic Architectures – Solution Criteria for Persistent Micelle Templates. Chemistry of Materials 201628(6), 1653-1667. 

2) Lokupitiya, H. N.; Stefik, M.* Cavitation-Enabled Rapid and Tunable Evolution of High-χN Micelles as Templates for Ordered Mesoporous Oxides. Nanoscale 20179, 1393-1397.

3) Peters, K.; Lokupitiya, H. N.; Sarauli, D.; Labs, M.; Pribil, M.; Rathousky, J.; Kuhn, A.; Leister*, D.; 
Stefik, M.*; Fattakhova-Rohfling, D.* Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics. Advanced Functional Materials 201626, 6682–6692. 

4) Sarkar, A.; Stefik, M.* How to Make Persistent Micelle Templates in 24 Hours and Know It using X-ray Scattering. Journal of Materials Chemistry A 2017, 5, 11840-11853.